12 research outputs found

    Increased accommodation following adaptation to image blur in myopes

    Get PDF
    Prolonged exposure to blurred images produces perceptual adaptatio

    IMI – industry guidelines and ethical considerations for myopia control report

    Get PDF
    PURPOSE. To discuss guidelines and ethical considerations associated with the development and prescription of treatments intended for myopia control (MC). METHODS. Critical review of published papers and guidance documents was undertaken, with a view to carefully considering the ethical standards associated with the investigation, development, registration, marketing, prescription, and use of MC treatments. RESULTS. The roles and responsibilities of regulatory bodies, manufacturers, academics, eye care practitioners, and patients in the use of MC treatments are explored. Particular attention is given to the ethical considerations for deciding whether to implement a MC strategy and how to implement this within a clinical trial or practice setting. Finally, the responsibilities in marketing, support, and education required to transfer required knowledge and skills to eye care practitioners and academics are discussed. CONCLUSIONS. Undertaking MC treatment in minors creates an ethical challenge for a wide variety of stakeholders. Regulatory bodies, manufacturers, academics, and clinicians all share an ethical responsibility to ensure that the products used for MC are safe and efficacious and that patients understand the benefits and potential risks of such products. This International Myopia Institute report highlights these ethical challenges and provides stakeholders with recommendations and guidelines in the development, financial support, prescribing, and advertising of such treatments.</p

    Blur perception throughout the visual field in myopia and emmetropia

    No full text
    We evaluated the ability of emmetropic and myopic observers to detect and discriminate blur across the retina under monocular or binocular viewing conditions. We recruited 39 young (23-30 years) healthy adults (n = 19 myopes) with best-corrected visual acuity 0.0 LogMAR (20/20) or better in each eye and no binocular or accommodative dysfunction. Monocular and binocular blur discrimination thresholds were measured as a function of pedestal blur using naturalistic stimuli with an adaptive 4AFC procedure. Stimuli were presented in a 46° diameter window at 40 cm. Gaussian blur pedestals were confined to an annulus at either 0°, 4°, 8°, or 12° eccentricity, with a blur increment applied to only one quadrant of the image. The adaptive procedure efficiently estimated a dipper shaped blur discrimination threshold function with two parameters: intrinsic blur and blur sensitivity. The amount of intrinsic blur increased for retinal eccentricities beyond 4° (p &lt; 0.001) and was lower in binocular than monocular conditions (p &lt; 0.001), but was similar across refractive groups (p = 0.47). Blur sensitivity decreased with retinal eccentricity (p &lt; 0.001) and was highest for binocular viewing, but only for central vision (p &lt; 0.05). Myopes showed worse blur sensitivity than emmetropes monocularly (p &lt; 0.05) but not binocularly (p = 0.66). As expected, blur perception worsens in the visual periphery and binocular summation is most evident in central vision. Furthermore, myopes exhibit a monocular impairment in blur sensitivity that improves under binocular conditions. Implications for the development of myopia are discussed.</p

    A psychophysical investigation of ocular expansion in human eyes

    No full text

    A Relationship between Tolerance of Blur and Personality

    No full text
    The amount of defocus blur that was reported as objectionable was related to measures of personality. These may be related to satisfaction with ophthalmic interventions that introduce blur

    Vergence driven accommodation with simulated disparity in myopia and emmetropia

    No full text
    The formation of focused and corresponding foveal images requires a close synergy between the accommodation and vergence systems. This linkage is usually decoupled in virtual reality systems and may be dysfunctional in people who are at risk of developing myopia. We study how refractive error affects vergence-accommodation interactions in stereoscopic displays. Vergence and accommodative responses were measured in 21 young healthy adults (n=9 myopes, 22–31 years) while subjects viewed naturalistic stimuli on a 3D display. In Step 1, vergence was driven behind the monitor using a blurred, non-accommodative, uncrossed disparity target. In Step 2, vergence and accommodation were driven back to the monitor plane using naturalistic images that contained structured depth and focus information from size, blur and/or disparity. In Step 1, both refractive groups converged towards the stereoscopic target depth plane, but the vergence-driven accommodative change was smaller in emmetropes than in myopes (F1,19=5.13, p=0.036). In Step 2, there was little effect of peripheral depth cues on accommodation or vergence in either refractive group. However, vergence responses were significantly slower (F1,19=4.55, p=0.046) and accommodation variability was higher (F1,19=12.9, p=0.0019) in myopes. Vergence and accommodation responses are disrupted in virtual reality displays in both refractive groups. Accommodation responses are less stable in myopes, perhaps due to a lower sensitivity to dioptric blur. Such inaccuracies of accommodation may cause long-term blur on the retina, which has been associated with a failure of emmetropization.</p
    corecore